Bug Summary

File:src/bitops.c
Warning:line 316, column 40
The result of the left shift is undefined due to shifting by '64', which is greater or equal to the width of type 'uint64_t'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name bitops.c -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mthread-model posix -mframe-pointer=none -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D REDIS_STATIC= -I ../deps/hiredis -I ../deps/linenoise -I ../deps/lua/src -I ../deps/hdr_histogram -D USE_JEMALLOC -I ../deps/jemalloc/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-c11-extensions -Wno-missing-field-initializers -std=c11 -fdebug-compilation-dir /home/netto/Desktop/redis-6.2.1/src -ferror-limit 19 -fmessage-length 0 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -faddrsig -o /tmp/scan-build-2021-03-14-133648-8817-1 -x c bitops.c
1/* Bit operations.
2 *
3 * Copyright (c) 2009-2012, Salvatore Sanfilippo <antirez at gmail dot com>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are met:
8 *
9 * * Redistributions of source code must retain the above copyright notice,
10 * this list of conditions and the following disclaimer.
11 * * Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * * Neither the name of Redis nor the names of its contributors may be used
15 * to endorse or promote products derived from this software without
16 * specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
22 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include "server.h"
32
33/* -----------------------------------------------------------------------------
34 * Helpers and low level bit functions.
35 * -------------------------------------------------------------------------- */
36
37/* Count number of bits set in the binary array pointed by 's' and long
38 * 'count' bytes. The implementation of this function is required to
39 * work with an input string length up to 512 MB or more (server.proto_max_bulk_len) */
40size_t redisPopcount(void *s, long count) {
41 size_t bits = 0;
42 unsigned char *p = s;
43 uint32_t *p4;
44 static const unsigned char bitsinbyte[256] = {0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8};
45
46 /* Count initial bytes not aligned to 32 bit. */
47 while((unsigned long)p & 3 && count) {
48 bits += bitsinbyte[*p++];
49 count--;
50 }
51
52 /* Count bits 28 bytes at a time */
53 p4 = (uint32_t*)p;
54 while(count>=28) {
55 uint32_t aux1, aux2, aux3, aux4, aux5, aux6, aux7;
56
57 aux1 = *p4++;
58 aux2 = *p4++;
59 aux3 = *p4++;
60 aux4 = *p4++;
61 aux5 = *p4++;
62 aux6 = *p4++;
63 aux7 = *p4++;
64 count -= 28;
65
66 aux1 = aux1 - ((aux1 >> 1) & 0x55555555);
67 aux1 = (aux1 & 0x33333333) + ((aux1 >> 2) & 0x33333333);
68 aux2 = aux2 - ((aux2 >> 1) & 0x55555555);
69 aux2 = (aux2 & 0x33333333) + ((aux2 >> 2) & 0x33333333);
70 aux3 = aux3 - ((aux3 >> 1) & 0x55555555);
71 aux3 = (aux3 & 0x33333333) + ((aux3 >> 2) & 0x33333333);
72 aux4 = aux4 - ((aux4 >> 1) & 0x55555555);
73 aux4 = (aux4 & 0x33333333) + ((aux4 >> 2) & 0x33333333);
74 aux5 = aux5 - ((aux5 >> 1) & 0x55555555);
75 aux5 = (aux5 & 0x33333333) + ((aux5 >> 2) & 0x33333333);
76 aux6 = aux6 - ((aux6 >> 1) & 0x55555555);
77 aux6 = (aux6 & 0x33333333) + ((aux6 >> 2) & 0x33333333);
78 aux7 = aux7 - ((aux7 >> 1) & 0x55555555);
79 aux7 = (aux7 & 0x33333333) + ((aux7 >> 2) & 0x33333333);
80 bits += ((((aux1 + (aux1 >> 4)) & 0x0F0F0F0F) +
81 ((aux2 + (aux2 >> 4)) & 0x0F0F0F0F) +
82 ((aux3 + (aux3 >> 4)) & 0x0F0F0F0F) +
83 ((aux4 + (aux4 >> 4)) & 0x0F0F0F0F) +
84 ((aux5 + (aux5 >> 4)) & 0x0F0F0F0F) +
85 ((aux6 + (aux6 >> 4)) & 0x0F0F0F0F) +
86 ((aux7 + (aux7 >> 4)) & 0x0F0F0F0F))* 0x01010101) >> 24;
87 }
88 /* Count the remaining bytes. */
89 p = (unsigned char*)p4;
90 while(count--) bits += bitsinbyte[*p++];
91 return bits;
92}
93
94/* Return the position of the first bit set to one (if 'bit' is 1) or
95 * zero (if 'bit' is 0) in the bitmap starting at 's' and long 'count' bytes.
96 *
97 * The function is guaranteed to return a value >= 0 if 'bit' is 0 since if
98 * no zero bit is found, it returns count*8 assuming the string is zero
99 * padded on the right. However if 'bit' is 1 it is possible that there is
100 * not a single set bit in the bitmap. In this special case -1 is returned. */
101long redisBitpos(void *s, unsigned long count, int bit) {
102 unsigned long *l;
103 unsigned char *c;
104 unsigned long skipval, word = 0, one;
105 long pos = 0; /* Position of bit, to return to the caller. */
106 unsigned long j;
107 int found;
108
109 /* Process whole words first, seeking for first word that is not
110 * all ones or all zeros respectively if we are looking for zeros
111 * or ones. This is much faster with large strings having contiguous
112 * blocks of 1 or 0 bits compared to the vanilla bit per bit processing.
113 *
114 * Note that if we start from an address that is not aligned
115 * to sizeof(unsigned long) we consume it byte by byte until it is
116 * aligned. */
117
118 /* Skip initial bits not aligned to sizeof(unsigned long) byte by byte. */
119 skipval = bit ? 0 : UCHAR_MAX(127*2 +1);
120 c = (unsigned char*) s;
121 found = 0;
122 while((unsigned long)c & (sizeof(*l)-1) && count) {
123 if (*c != skipval) {
124 found = 1;
125 break;
126 }
127 c++;
128 count--;
129 pos += 8;
130 }
131
132 /* Skip bits with full word step. */
133 l = (unsigned long*) c;
134 if (!found) {
135 skipval = bit ? 0 : ULONG_MAX(9223372036854775807L *2UL+1UL);
136 while (count >= sizeof(*l)) {
137 if (*l != skipval) break;
138 l++;
139 count -= sizeof(*l);
140 pos += sizeof(*l)*8;
141 }
142 }
143
144 /* Load bytes into "word" considering the first byte as the most significant
145 * (we basically consider it as written in big endian, since we consider the
146 * string as a set of bits from left to right, with the first bit at position
147 * zero.
148 *
149 * Note that the loading is designed to work even when the bytes left
150 * (count) are less than a full word. We pad it with zero on the right. */
151 c = (unsigned char*)l;
152 for (j = 0; j < sizeof(*l); j++) {
153 word <<= 8;
154 if (count) {
155 word |= *c;
156 c++;
157 count--;
158 }
159 }
160
161 /* Special case:
162 * If bits in the string are all zero and we are looking for one,
163 * return -1 to signal that there is not a single "1" in the whole
164 * string. This can't happen when we are looking for "0" as we assume
165 * that the right of the string is zero padded. */
166 if (bit == 1 && word == 0) return -1;
167
168 /* Last word left, scan bit by bit. The first thing we need is to
169 * have a single "1" set in the most significant position in an
170 * unsigned long. We don't know the size of the long so we use a
171 * simple trick. */
172 one = ULONG_MAX(9223372036854775807L *2UL+1UL); /* All bits set to 1.*/
173 one >>= 1; /* All bits set to 1 but the MSB. */
174 one = ~one; /* All bits set to 0 but the MSB. */
175
176 while(one) {
177 if (((one & word) != 0) == bit) return pos;
178 pos++;
179 one >>= 1;
180 }
181
182 /* If we reached this point, there is a bug in the algorithm, since
183 * the case of no match is handled as a special case before. */
184 serverPanic("End of redisBitpos() reached.")_serverPanic("bitops.c",184,"End of redisBitpos() reached."),
__builtin_unreachable()
;
185 return 0; /* Just to avoid warnings. */
186}
187
188/* The following set.*Bitfield and get.*Bitfield functions implement setting
189 * and getting arbitrary size (up to 64 bits) signed and unsigned integers
190 * at arbitrary positions into a bitmap.
191 *
192 * The representation considers the bitmap as having the bit number 0 to be
193 * the most significant bit of the first byte, and so forth, so for example
194 * setting a 5 bits unsigned integer to value 23 at offset 7 into a bitmap
195 * previously set to all zeroes, will produce the following representation:
196 *
197 * +--------+--------+
198 * |00000001|01110000|
199 * +--------+--------+
200 *
201 * When offsets and integer sizes are aligned to bytes boundaries, this is the
202 * same as big endian, however when such alignment does not exist, its important
203 * to also understand how the bits inside a byte are ordered.
204 *
205 * Note that this format follows the same convention as SETBIT and related
206 * commands.
207 */
208
209void setUnsignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits, uint64_t value) {
210 uint64_t byte, bit, byteval, bitval, j;
211
212 for (j = 0; j < bits; j++) {
213 bitval = (value & ((uint64_t)1<<(bits-1-j))) != 0;
214 byte = offset >> 3;
215 bit = 7 - (offset & 0x7);
216 byteval = p[byte];
217 byteval &= ~(1 << bit);
218 byteval |= bitval << bit;
219 p[byte] = byteval & 0xff;
220 offset++;
221 }
222}
223
224void setSignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits, int64_t value) {
225 uint64_t uv = value; /* Casting will add UINT64_MAX + 1 if v is negative. */
226 setUnsignedBitfield(p,offset,bits,uv);
227}
228
229uint64_t getUnsignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits) {
230 uint64_t byte, bit, byteval, bitval, j, value = 0;
231
232 for (j = 0; j < bits; j++) {
233 byte = offset >> 3;
234 bit = 7 - (offset & 0x7);
235 byteval = p[byte];
236 bitval = (byteval >> bit) & 1;
237 value = (value<<1) | bitval;
238 offset++;
239 }
240 return value;
241}
242
243int64_t getSignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits) {
244 int64_t value;
245 union {uint64_t u; int64_t i;} conv;
246
247 /* Converting from unsigned to signed is undefined when the value does
248 * not fit, however here we assume two's complement and the original value
249 * was obtained from signed -> unsigned conversion, so we'll find the
250 * most significant bit set if the original value was negative.
251 *
252 * Note that two's complement is mandatory for exact-width types
253 * according to the C99 standard. */
254 conv.u = getUnsignedBitfield(p,offset,bits);
255 value = conv.i;
256
257 /* If the top significant bit is 1, propagate it to all the
258 * higher bits for two's complement representation of signed
259 * integers. */
260 if (bits < 64 && (value & ((uint64_t)1 << (bits-1))))
261 value |= ((uint64_t)-1) << bits;
262 return value;
263}
264
265/* The following two functions detect overflow of a value in the context
266 * of storing it as an unsigned or signed integer with the specified
267 * number of bits. The functions both take the value and a possible increment.
268 * If no overflow could happen and the value+increment fit inside the limits,
269 * then zero is returned, otherwise in case of overflow, 1 is returned,
270 * otherwise in case of underflow, -1 is returned.
271 *
272 * When non-zero is returned (overflow or underflow), if not NULL, *limit is
273 * set to the value the operation should result when an overflow happens,
274 * depending on the specified overflow semantics:
275 *
276 * For BFOVERFLOW_SAT if 1 is returned, *limit it is set maximum value that
277 * you can store in that integer. when -1 is returned, *limit is set to the
278 * minimum value that an integer of that size can represent.
279 *
280 * For BFOVERFLOW_WRAP *limit is set by performing the operation in order to
281 * "wrap" around towards zero for unsigned integers, or towards the most
282 * negative number that is possible to represent for signed integers. */
283
284#define BFOVERFLOW_WRAP0 0
285#define BFOVERFLOW_SAT1 1
286#define BFOVERFLOW_FAIL2 2 /* Used by the BITFIELD command implementation. */
287
288int checkUnsignedBitfieldOverflow(uint64_t value, int64_t incr, uint64_t bits, int owtype, uint64_t *limit) {
289 uint64_t max = (bits == 64) ? UINT64_MAX(18446744073709551615UL) : (((uint64_t)1<<bits)-1);
1
Assuming 'bits' is equal to 64
2
'?' condition is true
290 int64_t maxincr = max-value;
291 int64_t minincr = -value;
292
293 if (value
2.1
'value' is <= 'max'
> max || (incr > 0 && incr > maxincr)) {
3
Assuming 'incr' is > 0
4
Assuming 'incr' is > 'maxincr'
5
Taking true branch
294 if (limit) {
6
Assuming 'limit' is non-null
7
Taking true branch
295 if (owtype == BFOVERFLOW_WRAP0) {
8
Assuming 'owtype' is equal to BFOVERFLOW_WRAP
9
Taking true branch
296 goto handle_wrap;
10
Control jumps to line 316
297 } else if (owtype == BFOVERFLOW_SAT1) {
298 *limit = max;
299 }
300 }
301 return 1;
302 } else if (incr < 0 && incr < minincr) {
303 if (limit) {
304 if (owtype == BFOVERFLOW_WRAP0) {
305 goto handle_wrap;
306 } else if (owtype == BFOVERFLOW_SAT1) {
307 *limit = 0;
308 }
309 }
310 return -1;
311 }
312 return 0;
313
314handle_wrap:
315 {
316 uint64_t mask = ((uint64_t)-1) << bits;
11
The result of the left shift is undefined due to shifting by '64', which is greater or equal to the width of type 'uint64_t'
317 uint64_t res = value+incr;
318
319 res &= ~mask;
320 *limit = res;
321 }
322 return 1;
323}
324
325int checkSignedBitfieldOverflow(int64_t value, int64_t incr, uint64_t bits, int owtype, int64_t *limit) {
326 int64_t max = (bits == 64) ? INT64_MAX(9223372036854775807L) : (((int64_t)1<<(bits-1))-1);
327 int64_t min = (-max)-1;
328
329 /* Note that maxincr and minincr could overflow, but we use the values
330 * only after checking 'value' range, so when we use it no overflow
331 * happens. */
332 int64_t maxincr = max-value;
333 int64_t minincr = min-value;
334
335 if (value > max || (bits != 64 && incr > maxincr) || (value >= 0 && incr > 0 && incr > maxincr))
336 {
337 if (limit) {
338 if (owtype == BFOVERFLOW_WRAP0) {
339 goto handle_wrap;
340 } else if (owtype == BFOVERFLOW_SAT1) {
341 *limit = max;
342 }
343 }
344 return 1;
345 } else if (value < min || (bits != 64 && incr < minincr) || (value < 0 && incr < 0 && incr < minincr)) {
346 if (limit) {
347 if (owtype == BFOVERFLOW_WRAP0) {
348 goto handle_wrap;
349 } else if (owtype == BFOVERFLOW_SAT1) {
350 *limit = min;
351 }
352 }
353 return -1;
354 }
355 return 0;
356
357handle_wrap:
358 {
359 uint64_t msb = (uint64_t)1 << (bits-1);
360 uint64_t a = value, b = incr, c;
361 c = a+b; /* Perform addition as unsigned so that's defined. */
362
363 /* If the sign bit is set, propagate to all the higher order
364 * bits, to cap the negative value. If it's clear, mask to
365 * the positive integer limit. */
366 if (bits < 64) {
367 uint64_t mask = ((uint64_t)-1) << bits;
368 if (c & msb) {
369 c |= mask;
370 } else {
371 c &= ~mask;
372 }
373 }
374 *limit = c;
375 }
376 return 1;
377}
378
379/* Debugging function. Just show bits in the specified bitmap. Not used
380 * but here for not having to rewrite it when debugging is needed. */
381void printBits(unsigned char *p, unsigned long count) {
382 unsigned long j, i, byte;
383
384 for (j = 0; j < count; j++) {
385 byte = p[j];
386 for (i = 0x80; i > 0; i /= 2)
387 printf("%c", (byte & i) ? '1' : '0');
388 printf("|");
389 }
390 printf("\n");
391}
392
393/* -----------------------------------------------------------------------------
394 * Bits related string commands: GETBIT, SETBIT, BITCOUNT, BITOP.
395 * -------------------------------------------------------------------------- */
396
397#define BITOP_AND0 0
398#define BITOP_OR1 1
399#define BITOP_XOR2 2
400#define BITOP_NOT3 3
401
402#define BITFIELDOP_GET0 0
403#define BITFIELDOP_SET1 1
404#define BITFIELDOP_INCRBY2 2
405
406/* This helper function used by GETBIT / SETBIT parses the bit offset argument
407 * making sure an error is returned if it is negative or if it overflows
408 * Redis 512 MB limit for the string value or more (server.proto_max_bulk_len).
409 *
410 * If the 'hash' argument is true, and 'bits is positive, then the command
411 * will also parse bit offsets prefixed by "#". In such a case the offset
412 * is multiplied by 'bits'. This is useful for the BITFIELD command. */
413int getBitOffsetFromArgument(client *c, robj *o, size_t *offset, int hash, int bits) {
414 long long loffset;
415 char *err = "bit offset is not an integer or out of range";
416 char *p = o->ptr;
417 size_t plen = sdslen(p);
418 int usehash = 0;
419
420 /* Handle #<offset> form. */
421 if (p[0] == '#' && hash && bits > 0) usehash = 1;
422
423 if (string2ll(p+usehash,plen-usehash,&loffset) == 0) {
424 addReplyError(c,err);
425 return C_ERR-1;
426 }
427
428 /* Adjust the offset by 'bits' for #<offset> form. */
429 if (usehash) loffset *= bits;
430
431 /* Limit offset to server.proto_max_bulk_len (512MB in bytes by default) */
432 if ((loffset < 0) || (loffset >> 3) >= server.proto_max_bulk_len)
433 {
434 addReplyError(c,err);
435 return C_ERR-1;
436 }
437
438 *offset = (size_t)loffset;
439 return C_OK0;
440}
441
442/* This helper function for BITFIELD parses a bitfield type in the form
443 * <sign><bits> where sign is 'u' or 'i' for unsigned and signed, and
444 * the bits is a value between 1 and 64. However 64 bits unsigned integers
445 * are reported as an error because of current limitations of Redis protocol
446 * to return unsigned integer values greater than INT64_MAX.
447 *
448 * On error C_ERR is returned and an error is sent to the client. */
449int getBitfieldTypeFromArgument(client *c, robj *o, int *sign, int *bits) {
450 char *p = o->ptr;
451 char *err = "Invalid bitfield type. Use something like i16 u8. Note that u64 is not supported but i64 is.";
452 long long llbits;
453
454 if (p[0] == 'i') {
455 *sign = 1;
456 } else if (p[0] == 'u') {
457 *sign = 0;
458 } else {
459 addReplyError(c,err);
460 return C_ERR-1;
461 }
462
463 if ((string2ll(p+1,strlen(p+1),&llbits)) == 0 ||
464 llbits < 1 ||
465 (*sign == 1 && llbits > 64) ||
466 (*sign == 0 && llbits > 63))
467 {
468 addReplyError(c,err);
469 return C_ERR-1;
470 }
471 *bits = llbits;
472 return C_OK0;
473}
474
475/* This is an helper function for commands implementations that need to write
476 * bits to a string object. The command creates or pad with zeroes the string
477 * so that the 'maxbit' bit can be addressed. The object is finally
478 * returned. Otherwise if the key holds a wrong type NULL is returned and
479 * an error is sent to the client. */
480robj *lookupStringForBitCommand(client *c, size_t maxbit) {
481 size_t byte = maxbit >> 3;
482 robj *o = lookupKeyWrite(c->db,c->argv[1]);
483 if (checkType(c,o,OBJ_STRING0)) return NULL((void*)0);
484
485 if (o == NULL((void*)0)) {
486 o = createObject(OBJ_STRING0,sdsnewlen(NULL((void*)0), byte+1));
487 dbAdd(c->db,c->argv[1],o);
488 } else {
489 o = dbUnshareStringValue(c->db,c->argv[1],o);
490 o->ptr = sdsgrowzero(o->ptr,byte+1);
491 }
492 return o;
493}
494
495/* Return a pointer to the string object content, and stores its length
496 * in 'len'. The user is required to pass (likely stack allocated) buffer
497 * 'llbuf' of at least LONG_STR_SIZE bytes. Such a buffer is used in the case
498 * the object is integer encoded in order to provide the representation
499 * without using heap allocation.
500 *
501 * The function returns the pointer to the object array of bytes representing
502 * the string it contains, that may be a pointer to 'llbuf' or to the
503 * internal object representation. As a side effect 'len' is filled with
504 * the length of such buffer.
505 *
506 * If the source object is NULL the function is guaranteed to return NULL
507 * and set 'len' to 0. */
508unsigned char *getObjectReadOnlyString(robj *o, long *len, char *llbuf) {
509 serverAssert(o->type == OBJ_STRING)((o->type == 0)?(void)0 : (_serverAssert("o->type == OBJ_STRING"
,"bitops.c",509),__builtin_unreachable()))
;
510 unsigned char *p = NULL((void*)0);
511
512 /* Set the 'p' pointer to the string, that can be just a stack allocated
513 * array if our string was integer encoded. */
514 if (o && o->encoding == OBJ_ENCODING_INT1) {
515 p = (unsigned char*) llbuf;
516 if (len) *len = ll2string(llbuf,LONG_STR_SIZE21,(long)o->ptr);
517 } else if (o) {
518 p = (unsigned char*) o->ptr;
519 if (len) *len = sdslen(o->ptr);
520 } else {
521 if (len) *len = 0;
522 }
523 return p;
524}
525
526/* SETBIT key offset bitvalue */
527void setbitCommand(client *c) {
528 robj *o;
529 char *err = "bit is not an integer or out of range";
530 size_t bitoffset;
531 ssize_t byte, bit;
532 int byteval, bitval;
533 long on;
534
535 if (getBitOffsetFromArgument(c,c->argv[2],&bitoffset,0,0) != C_OK0)
536 return;
537
538 if (getLongFromObjectOrReply(c,c->argv[3],&on,err) != C_OK0)
539 return;
540
541 /* Bits can only be set or cleared... */
542 if (on & ~1) {
543 addReplyError(c,err);
544 return;
545 }
546
547 if ((o = lookupStringForBitCommand(c,bitoffset)) == NULL((void*)0)) return;
548
549 /* Get current values */
550 byte = bitoffset >> 3;
551 byteval = ((uint8_t*)o->ptr)[byte];
552 bit = 7 - (bitoffset & 0x7);
553 bitval = byteval & (1 << bit);
554
555 /* Update byte with new bit value and return original value */
556 byteval &= ~(1 << bit);
557 byteval |= ((on & 0x1) << bit);
558 ((uint8_t*)o->ptr)[byte] = byteval;
559 signalModifiedKey(c,c->db,c->argv[1]);
560 notifyKeyspaceEvent(NOTIFY_STRING(1<<3),"setbit",c->argv[1],c->db->id);
561 server.dirty++;
562 addReply(c, bitval ? shared.cone : shared.czero);
563}
564
565/* GETBIT key offset */
566void getbitCommand(client *c) {
567 robj *o;
568 char llbuf[32];
569 size_t bitoffset;
570 size_t byte, bit;
571 size_t bitval = 0;
572
573 if (getBitOffsetFromArgument(c,c->argv[2],&bitoffset,0,0) != C_OK0)
574 return;
575
576 if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL((void*)0) ||
577 checkType(c,o,OBJ_STRING0)) return;
578
579 byte = bitoffset >> 3;
580 bit = 7 - (bitoffset & 0x7);
581 if (sdsEncodedObject(o)(o->encoding == 0 || o->encoding == 8)) {
582 if (byte < sdslen(o->ptr))
583 bitval = ((uint8_t*)o->ptr)[byte] & (1 << bit);
584 } else {
585 if (byte < (size_t)ll2string(llbuf,sizeof(llbuf),(long)o->ptr))
586 bitval = llbuf[byte] & (1 << bit);
587 }
588
589 addReply(c, bitval ? shared.cone : shared.czero);
590}
591
592/* BITOP op_name target_key src_key1 src_key2 src_key3 ... src_keyN */
593void bitopCommand(client *c) {
594 char *opname = c->argv[1]->ptr;
595 robj *o, *targetkey = c->argv[2];
596 unsigned long op, j, numkeys;
597 robj **objects; /* Array of source objects. */
598 unsigned char **src; /* Array of source strings pointers. */
599 unsigned long *len, maxlen = 0; /* Array of length of src strings,
600 and max len. */
601 unsigned long minlen = 0; /* Min len among the input keys. */
602 unsigned char *res = NULL((void*)0); /* Resulting string. */
603
604 /* Parse the operation name. */
605 if ((opname[0] == 'a' || opname[0] == 'A') && !strcasecmp(opname,"and"))
606 op = BITOP_AND0;
607 else if((opname[0] == 'o' || opname[0] == 'O') && !strcasecmp(opname,"or"))
608 op = BITOP_OR1;
609 else if((opname[0] == 'x' || opname[0] == 'X') && !strcasecmp(opname,"xor"))
610 op = BITOP_XOR2;
611 else if((opname[0] == 'n' || opname[0] == 'N') && !strcasecmp(opname,"not"))
612 op = BITOP_NOT3;
613 else {
614 addReplyErrorObject(c,shared.syntaxerr);
615 return;
616 }
617
618 /* Sanity check: NOT accepts only a single key argument. */
619 if (op == BITOP_NOT3 && c->argc != 4) {
620 addReplyError(c,"BITOP NOT must be called with a single source key.");
621 return;
622 }
623
624 /* Lookup keys, and store pointers to the string objects into an array. */
625 numkeys = c->argc - 3;
626 src = zmalloc(sizeof(unsigned char*) * numkeys);
627 len = zmalloc(sizeof(long) * numkeys);
628 objects = zmalloc(sizeof(robj*) * numkeys);
629 for (j = 0; j < numkeys; j++) {
630 o = lookupKeyRead(c->db,c->argv[j+3]);
631 /* Handle non-existing keys as empty strings. */
632 if (o == NULL((void*)0)) {
633 objects[j] = NULL((void*)0);
634 src[j] = NULL((void*)0);
635 len[j] = 0;
636 minlen = 0;
637 continue;
638 }
639 /* Return an error if one of the keys is not a string. */
640 if (checkType(c,o,OBJ_STRING0)) {
641 unsigned long i;
642 for (i = 0; i < j; i++) {
643 if (objects[i])
644 decrRefCount(objects[i]);
645 }
646 zfree(src);
647 zfree(len);
648 zfree(objects);
649 return;
650 }
651 objects[j] = getDecodedObject(o);
652 src[j] = objects[j]->ptr;
653 len[j] = sdslen(objects[j]->ptr);
654 if (len[j] > maxlen) maxlen = len[j];
655 if (j == 0 || len[j] < minlen) minlen = len[j];
656 }
657
658 /* Compute the bit operation, if at least one string is not empty. */
659 if (maxlen) {
660 res = (unsigned char*) sdsnewlen(NULL((void*)0),maxlen);
661 unsigned char output, byte;
662 unsigned long i;
663
664 /* Fast path: as far as we have data for all the input bitmaps we
665 * can take a fast path that performs much better than the
666 * vanilla algorithm. On ARM we skip the fast path since it will
667 * result in GCC compiling the code using multiple-words load/store
668 * operations that are not supported even in ARM >= v6. */
669 j = 0;
670 #ifndef USE_ALIGNED_ACCESS
671 if (minlen >= sizeof(unsigned long)*4 && numkeys <= 16) {
672 unsigned long *lp[16];
673 unsigned long *lres = (unsigned long*) res;
674
675 /* Note: sds pointer is always aligned to 8 byte boundary. */
676 memcpy(lp,src,sizeof(unsigned long*)*numkeys);
677 memcpy(res,src[0],minlen);
678
679 /* Different branches per different operations for speed (sorry). */
680 if (op == BITOP_AND0) {
681 while(minlen >= sizeof(unsigned long)*4) {
682 for (i = 1; i < numkeys; i++) {
683 lres[0] &= lp[i][0];
684 lres[1] &= lp[i][1];
685 lres[2] &= lp[i][2];
686 lres[3] &= lp[i][3];
687 lp[i]+=4;
688 }
689 lres+=4;
690 j += sizeof(unsigned long)*4;
691 minlen -= sizeof(unsigned long)*4;
692 }
693 } else if (op == BITOP_OR1) {
694 while(minlen >= sizeof(unsigned long)*4) {
695 for (i = 1; i < numkeys; i++) {
696 lres[0] |= lp[i][0];
697 lres[1] |= lp[i][1];
698 lres[2] |= lp[i][2];
699 lres[3] |= lp[i][3];
700 lp[i]+=4;
701 }
702 lres+=4;
703 j += sizeof(unsigned long)*4;
704 minlen -= sizeof(unsigned long)*4;
705 }
706 } else if (op == BITOP_XOR2) {
707 while(minlen >= sizeof(unsigned long)*4) {
708 for (i = 1; i < numkeys; i++) {
709 lres[0] ^= lp[i][0];
710 lres[1] ^= lp[i][1];
711 lres[2] ^= lp[i][2];
712 lres[3] ^= lp[i][3];
713 lp[i]+=4;
714 }
715 lres+=4;
716 j += sizeof(unsigned long)*4;
717 minlen -= sizeof(unsigned long)*4;
718 }
719 } else if (op == BITOP_NOT3) {
720 while(minlen >= sizeof(unsigned long)*4) {
721 lres[0] = ~lres[0];
722 lres[1] = ~lres[1];
723 lres[2] = ~lres[2];
724 lres[3] = ~lres[3];
725 lres+=4;
726 j += sizeof(unsigned long)*4;
727 minlen -= sizeof(unsigned long)*4;
728 }
729 }
730 }
731 #endif
732
733 /* j is set to the next byte to process by the previous loop. */
734 for (; j < maxlen; j++) {
735 output = (len[0] <= j) ? 0 : src[0][j];
736 if (op == BITOP_NOT3) output = ~output;
737 for (i = 1; i < numkeys; i++) {
738 int skip = 0;
739 byte = (len[i] <= j) ? 0 : src[i][j];
740 switch(op) {
741 case BITOP_AND0:
742 output &= byte;
743 skip = (output == 0);
744 break;
745 case BITOP_OR1:
746 output |= byte;
747 skip = (output == 0xff);
748 break;
749 case BITOP_XOR2: output ^= byte; break;
750 }
751
752 if (skip) {
753 break;
754 }
755 }
756 res[j] = output;
757 }
758 }
759 for (j = 0; j < numkeys; j++) {
760 if (objects[j])
761 decrRefCount(objects[j]);
762 }
763 zfree(src);
764 zfree(len);
765 zfree(objects);
766
767 /* Store the computed value into the target key */
768 if (maxlen) {
769 o = createObject(OBJ_STRING0,res);
770 setKey(c,c->db,targetkey,o);
771 notifyKeyspaceEvent(NOTIFY_STRING(1<<3),"set",targetkey,c->db->id);
772 decrRefCount(o);
773 server.dirty++;
774 } else if (dbDelete(c->db,targetkey)) {
775 signalModifiedKey(c,c->db,targetkey);
776 notifyKeyspaceEvent(NOTIFY_GENERIC(1<<2),"del",targetkey,c->db->id);
777 server.dirty++;
778 }
779 addReplyLongLong(c,maxlen); /* Return the output string length in bytes. */
780}
781
782/* BITCOUNT key [start end] */
783void bitcountCommand(client *c) {
784 robj *o;
785 long start, end, strlen;
786 unsigned char *p;
787 char llbuf[LONG_STR_SIZE21];
788
789 /* Lookup, check for type, and return 0 for non existing keys. */
790 if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL((void*)0) ||
791 checkType(c,o,OBJ_STRING0)) return;
792 p = getObjectReadOnlyString(o,&strlen,llbuf);
793
794 /* Parse start/end range if any. */
795 if (c->argc == 4) {
796 if (getLongFromObjectOrReply(c,c->argv[2],&start,NULL((void*)0)) != C_OK0)
797 return;
798 if (getLongFromObjectOrReply(c,c->argv[3],&end,NULL((void*)0)) != C_OK0)
799 return;
800 /* Convert negative indexes */
801 if (start < 0 && end < 0 && start > end) {
802 addReply(c,shared.czero);
803 return;
804 }
805 if (start < 0) start = strlen+start;
806 if (end < 0) end = strlen+end;
807 if (start < 0) start = 0;
808 if (end < 0) end = 0;
809 if (end >= strlen) end = strlen-1;
810 } else if (c->argc == 2) {
811 /* The whole string. */
812 start = 0;
813 end = strlen-1;
814 } else {
815 /* Syntax error. */
816 addReplyErrorObject(c,shared.syntaxerr);
817 return;
818 }
819
820 /* Precondition: end >= 0 && end < strlen, so the only condition where
821 * zero can be returned is: start > end. */
822 if (start > end) {
823 addReply(c,shared.czero);
824 } else {
825 long bytes = end-start+1;
826
827 addReplyLongLong(c,redisPopcount(p+start,bytes));
828 }
829}
830
831/* BITPOS key bit [start [end]] */
832void bitposCommand(client *c) {
833 robj *o;
834 long bit, start, end, strlen;
835 unsigned char *p;
836 char llbuf[LONG_STR_SIZE21];
837 int end_given = 0;
838
839 /* Parse the bit argument to understand what we are looking for, set
840 * or clear bits. */
841 if (getLongFromObjectOrReply(c,c->argv[2],&bit,NULL((void*)0)) != C_OK0)
842 return;
843 if (bit != 0 && bit != 1) {
844 addReplyError(c, "The bit argument must be 1 or 0.");
845 return;
846 }
847
848 /* If the key does not exist, from our point of view it is an infinite
849 * array of 0 bits. If the user is looking for the fist clear bit return 0,
850 * If the user is looking for the first set bit, return -1. */
851 if ((o = lookupKeyRead(c->db,c->argv[1])) == NULL((void*)0)) {
852 addReplyLongLong(c, bit ? -1 : 0);
853 return;
854 }
855 if (checkType(c,o,OBJ_STRING0)) return;
856 p = getObjectReadOnlyString(o,&strlen,llbuf);
857
858 /* Parse start/end range if any. */
859 if (c->argc == 4 || c->argc == 5) {
860 if (getLongFromObjectOrReply(c,c->argv[3],&start,NULL((void*)0)) != C_OK0)
861 return;
862 if (c->argc == 5) {
863 if (getLongFromObjectOrReply(c,c->argv[4],&end,NULL((void*)0)) != C_OK0)
864 return;
865 end_given = 1;
866 } else {
867 end = strlen-1;
868 }
869 /* Convert negative indexes */
870 if (start < 0) start = strlen+start;
871 if (end < 0) end = strlen+end;
872 if (start < 0) start = 0;
873 if (end < 0) end = 0;
874 if (end >= strlen) end = strlen-1;
875 } else if (c->argc == 3) {
876 /* The whole string. */
877 start = 0;
878 end = strlen-1;
879 } else {
880 /* Syntax error. */
881 addReplyErrorObject(c,shared.syntaxerr);
882 return;
883 }
884
885 /* For empty ranges (start > end) we return -1 as an empty range does
886 * not contain a 0 nor a 1. */
887 if (start > end) {
888 addReplyLongLong(c, -1);
889 } else {
890 long bytes = end-start+1;
891 long pos = redisBitpos(p+start,bytes,bit);
892
893 /* If we are looking for clear bits, and the user specified an exact
894 * range with start-end, we can't consider the right of the range as
895 * zero padded (as we do when no explicit end is given).
896 *
897 * So if redisBitpos() returns the first bit outside the range,
898 * we return -1 to the caller, to mean, in the specified range there
899 * is not a single "0" bit. */
900 if (end_given && bit == 0 && pos == bytes*8) {
901 addReplyLongLong(c,-1);
902 return;
903 }
904 if (pos != -1) pos += start*8; /* Adjust for the bytes we skipped. */
905 addReplyLongLong(c,pos);
906 }
907}
908
909/* BITFIELD key subcommmand-1 arg ... subcommand-2 arg ... subcommand-N ...
910 *
911 * Supported subcommands:
912 *
913 * GET <type> <offset>
914 * SET <type> <offset> <value>
915 * INCRBY <type> <offset> <increment>
916 * OVERFLOW [WRAP|SAT|FAIL]
917 */
918
919#define BITFIELD_FLAG_NONE0 0
920#define BITFIELD_FLAG_READONLY(1<<0) (1<<0)
921
922struct bitfieldOp {
923 uint64_t offset; /* Bitfield offset. */
924 int64_t i64; /* Increment amount (INCRBY) or SET value */
925 int opcode; /* Operation id. */
926 int owtype; /* Overflow type to use. */
927 int bits; /* Integer bitfield bits width. */
928 int sign; /* True if signed, otherwise unsigned op. */
929};
930
931/* This implements both the BITFIELD command and the BITFIELD_RO command
932 * when flags is set to BITFIELD_FLAG_READONLY: in this case only the
933 * GET subcommand is allowed, other subcommands will return an error. */
934void bitfieldGeneric(client *c, int flags) {
935 robj *o;
936 size_t bitoffset;
937 int j, numops = 0, changes = 0;
938 struct bitfieldOp *ops = NULL((void*)0); /* Array of ops to execute at end. */
939 int owtype = BFOVERFLOW_WRAP0; /* Overflow type. */
940 int readonly = 1;
941 size_t highest_write_offset = 0;
942
943 for (j = 2; j < c->argc; j++) {
944 int remargs = c->argc-j-1; /* Remaining args other than current. */
945 char *subcmd = c->argv[j]->ptr; /* Current command name. */
946 int opcode; /* Current operation code. */
947 long long i64 = 0; /* Signed SET value. */
948 int sign = 0; /* Signed or unsigned type? */
949 int bits = 0; /* Bitfield width in bits. */
950
951 if (!strcasecmp(subcmd,"get") && remargs >= 2)
952 opcode = BITFIELDOP_GET0;
953 else if (!strcasecmp(subcmd,"set") && remargs >= 3)
954 opcode = BITFIELDOP_SET1;
955 else if (!strcasecmp(subcmd,"incrby") && remargs >= 3)
956 opcode = BITFIELDOP_INCRBY2;
957 else if (!strcasecmp(subcmd,"overflow") && remargs >= 1) {
958 char *owtypename = c->argv[j+1]->ptr;
959 j++;
960 if (!strcasecmp(owtypename,"wrap"))
961 owtype = BFOVERFLOW_WRAP0;
962 else if (!strcasecmp(owtypename,"sat"))
963 owtype = BFOVERFLOW_SAT1;
964 else if (!strcasecmp(owtypename,"fail"))
965 owtype = BFOVERFLOW_FAIL2;
966 else {
967 addReplyError(c,"Invalid OVERFLOW type specified");
968 zfree(ops);
969 return;
970 }
971 continue;
972 } else {
973 addReplyErrorObject(c,shared.syntaxerr);
974 zfree(ops);
975 return;
976 }
977
978 /* Get the type and offset arguments, common to all the ops. */
979 if (getBitfieldTypeFromArgument(c,c->argv[j+1],&sign,&bits) != C_OK0) {
980 zfree(ops);
981 return;
982 }
983
984 if (getBitOffsetFromArgument(c,c->argv[j+2],&bitoffset,1,bits) != C_OK0){
985 zfree(ops);
986 return;
987 }
988
989 if (opcode != BITFIELDOP_GET0) {
990 readonly = 0;
991 if (highest_write_offset < bitoffset + bits - 1)
992 highest_write_offset = bitoffset + bits - 1;
993 /* INCRBY and SET require another argument. */
994 if (getLongLongFromObjectOrReply(c,c->argv[j+3],&i64,NULL((void*)0)) != C_OK0){
995 zfree(ops);
996 return;
997 }
998 }
999
1000 /* Populate the array of operations we'll process. */
1001 ops = zrealloc(ops,sizeof(*ops)*(numops+1));
1002 ops[numops].offset = bitoffset;
1003 ops[numops].i64 = i64;
1004 ops[numops].opcode = opcode;
1005 ops[numops].owtype = owtype;
1006 ops[numops].bits = bits;
1007 ops[numops].sign = sign;
1008 numops++;
1009
1010 j += 3 - (opcode == BITFIELDOP_GET0);
1011 }
1012
1013 if (readonly) {
1014 /* Lookup for read is ok if key doesn't exit, but errors
1015 * if it's not a string. */
1016 o = lookupKeyRead(c->db,c->argv[1]);
1017 if (o != NULL((void*)0) && checkType(c,o,OBJ_STRING0)) {
1018 zfree(ops);
1019 return;
1020 }
1021 } else {
1022 if (flags & BITFIELD_FLAG_READONLY(1<<0)) {
1023 zfree(ops);
1024 addReplyError(c, "BITFIELD_RO only supports the GET subcommand");
1025 return;
1026 }
1027
1028 /* Lookup by making room up to the farest bit reached by
1029 * this operation. */
1030 if ((o = lookupStringForBitCommand(c,
1031 highest_write_offset)) == NULL((void*)0)) {
1032 zfree(ops);
1033 return;
1034 }
1035 }
1036
1037 addReplyArrayLen(c,numops);
1038
1039 /* Actually process the operations. */
1040 for (j = 0; j < numops; j++) {
1041 struct bitfieldOp *thisop = ops+j;
1042
1043 /* Execute the operation. */
1044 if (thisop->opcode == BITFIELDOP_SET1 ||
1045 thisop->opcode == BITFIELDOP_INCRBY2)
1046 {
1047 /* SET and INCRBY: We handle both with the same code path
1048 * for simplicity. SET return value is the previous value so
1049 * we need fetch & store as well. */
1050
1051 /* We need two different but very similar code paths for signed
1052 * and unsigned operations, since the set of functions to get/set
1053 * the integers and the used variables types are different. */
1054 if (thisop->sign) {
1055 int64_t oldval, newval, wrapped, retval;
1056 int overflow;
1057
1058 oldval = getSignedBitfield(o->ptr,thisop->offset,
1059 thisop->bits);
1060
1061 if (thisop->opcode == BITFIELDOP_INCRBY2) {
1062 newval = oldval + thisop->i64;
1063 overflow = checkSignedBitfieldOverflow(oldval,
1064 thisop->i64,thisop->bits,thisop->owtype,&wrapped);
1065 if (overflow) newval = wrapped;
1066 retval = newval;
1067 } else {
1068 newval = thisop->i64;
1069 overflow = checkSignedBitfieldOverflow(newval,
1070 0,thisop->bits,thisop->owtype,&wrapped);
1071 if (overflow) newval = wrapped;
1072 retval = oldval;
1073 }
1074
1075 /* On overflow of type is "FAIL", don't write and return
1076 * NULL to signal the condition. */
1077 if (!(overflow && thisop->owtype == BFOVERFLOW_FAIL2)) {
1078 addReplyLongLong(c,retval);
1079 setSignedBitfield(o->ptr,thisop->offset,
1080 thisop->bits,newval);
1081 } else {
1082 addReplyNull(c);
1083 }
1084 } else {
1085 uint64_t oldval, newval, wrapped, retval;
1086 int overflow;
1087
1088 oldval = getUnsignedBitfield(o->ptr,thisop->offset,
1089 thisop->bits);
1090
1091 if (thisop->opcode == BITFIELDOP_INCRBY2) {
1092 newval = oldval + thisop->i64;
1093 overflow = checkUnsignedBitfieldOverflow(oldval,
1094 thisop->i64,thisop->bits,thisop->owtype,&wrapped);
1095 if (overflow) newval = wrapped;
1096 retval = newval;
1097 } else {
1098 newval = thisop->i64;
1099 overflow = checkUnsignedBitfieldOverflow(newval,
1100 0,thisop->bits,thisop->owtype,&wrapped);
1101 if (overflow) newval = wrapped;
1102 retval = oldval;
1103 }
1104 /* On overflow of type is "FAIL", don't write and return
1105 * NULL to signal the condition. */
1106 if (!(overflow && thisop->owtype == BFOVERFLOW_FAIL2)) {
1107 addReplyLongLong(c,retval);
1108 setUnsignedBitfield(o->ptr,thisop->offset,
1109 thisop->bits,newval);
1110 } else {
1111 addReplyNull(c);
1112 }
1113 }
1114 changes++;
1115 } else {
1116 /* GET */
1117 unsigned char buf[9];
1118 long strlen = 0;
1119 unsigned char *src = NULL((void*)0);
1120 char llbuf[LONG_STR_SIZE21];
1121
1122 if (o != NULL((void*)0))
1123 src = getObjectReadOnlyString(o,&strlen,llbuf);
1124
1125 /* For GET we use a trick: before executing the operation
1126 * copy up to 9 bytes to a local buffer, so that we can easily
1127 * execute up to 64 bit operations that are at actual string
1128 * object boundaries. */
1129 memset(buf,0,9);
1130 int i;
1131 size_t byte = thisop->offset >> 3;
1132 for (i = 0; i < 9; i++) {
1133 if (src == NULL((void*)0) || i+byte >= (size_t)strlen) break;
1134 buf[i] = src[i+byte];
1135 }
1136
1137 /* Now operate on the copied buffer which is guaranteed
1138 * to be zero-padded. */
1139 if (thisop->sign) {
1140 int64_t val = getSignedBitfield(buf,thisop->offset-(byte*8),
1141 thisop->bits);
1142 addReplyLongLong(c,val);
1143 } else {
1144 uint64_t val = getUnsignedBitfield(buf,thisop->offset-(byte*8),
1145 thisop->bits);
1146 addReplyLongLong(c,val);
1147 }
1148 }
1149 }
1150
1151 if (changes) {
1152 signalModifiedKey(c,c->db,c->argv[1]);
1153 notifyKeyspaceEvent(NOTIFY_STRING(1<<3),"setbit",c->argv[1],c->db->id);
1154 server.dirty += changes;
1155 }
1156 zfree(ops);
1157}
1158
1159void bitfieldCommand(client *c) {
1160 bitfieldGeneric(c, BITFIELD_FLAG_NONE0);
1161}
1162
1163void bitfieldroCommand(client *c) {
1164 bitfieldGeneric(c, BITFIELD_FLAG_READONLY(1<<0));
1165}